
DustArch
DustVoice’s Arch Linux from scratch

David Holland

November 15, 2020

Contents

1 Inside the archiso
1.1 Syncing up pacman
1.1.1 Official repositories
1.1.2 AUR .
1.1.3 Software categories
1.1.4 Software installation
1.1.4.1 Example section
1.2 Formatting the drive
1.2.1 The standard way
1.2.2 Full system encryption
1.2.2.1 EFI System partition
1.2.2.2 LUKS
1.2.2.3 LVM
1.2.2.4 Format & mount
1.2.2.5 Unmount & Close
1.3 Preparing the chroot environment
2 Entering the chroot.
2.1 Installing additional packages
2.2 Master of time
2.3 Master of locales
2.4 Naming your machine.
2.4.1 hostname
2.4.2 hosts .
2.5 User setup .
2.5.1 Give root a password
2.5.2 Create a personal user
2.6 Boot manager
2.6.1 EFISTUB
2.6.2 grub .
2.6.2.1 BIOS
2.6.2.2 UEFI

2.6.2.3 grub config
2.7 Switch to a systemd based ramdisk
2.8 Hibernation
2.9 Secure Boot
2.9.1 shim .
2.9.2 The manual way
2.9.2.1 File formats
2.9.2.2 Create the keys
2.9.2.3 Windows stuff
2.9.2.4 Move the kernel & keys
2.9.2.5 Signing
2.9.2.6 Add EFI entries
2.9.2.7 Enrolling everything
3 Inside the DustArch
3.1 Someone there?
3.2 Update and upgrade
3.3 Enabling the multilib repository
3.4 zsh for president
3.5 git .
3.6 Security is important
3.6.1 Smartcard shenanigans
3.7 Additional required tools
3.8 Setting up a home environment
3.8.1 Use dotfiles for a base config
3.8.2 Set up gpg
3.8.3 Finalize the dotfiles
3.8.4 gpg-agent forwarding
3.8.5 Back to your roots
3.9 Audio .
3.9.1 alsa .
3.9.2 pulseaudio
3.9.3 jack .
3.9.4 Audio handling
3.10 Bluetooth .
3.11 Graphical desktop environment
3.11.1 NVIDIA
3.11.2 Launching the graphical environment
3.11.2.1 The NVIDIA way
3.12 Additional console software
3.12.1 tmux .
3.12.2 Communication
3.12.2.1 weechat

3.12.3 PDF viewer
3.13 Additional hybrid software.
3.13.1 Password management
3.13.2 python
3.13.3 ruby & asciidoctor
3.13.4 JUCE and FRUT
3.13.4.1 Using JUCE.
3.13.5 Additional development tools
3.13.5.1 Code formatting
3.13.5.2 Documentation
3.13.5.3 Build tools
3.13.6 Android file transfer
3.13.6.1 simple-mtpfsAUR
3.13.6.2 adb
3.13.7 Partition management
3.13.8 PDF viewer
3.13.9 Process management
3.13.10 Video software
3.13.10.1 Live streaming a terminal session
3.14 Additional GUI software
3.14.1 Session Lock
3.14.2 xfce-polkitAUR
3.14.3 Desktop background
3.14.4 Compositing software
3.14.5 networkmanager applet
3.14.6 Show keyboard layout
3.14.7 X clipboard
3.14.8 Taking screen shots
3.14.9 Image viewer
3.14.10 File manager
3.14.11 Archive manager
3.14.12 Web browser
3.14.12.1 Entering the dark side
3.14.13 Office utilities
3.14.13.1 Printing
3.14.14 Communication
3.14.14.1 Email.
3.14.14.2 Telegram
3.14.14.3 TeamSpeak 3
3.14.14.4 Discord

3.14.15 Video software
3.14.15.1 Viewing video.
3.14.15.2 Creating video
3.14.15.3 Editing video
3.14.15.4 Utilizing video
3.14.16 Audio Production.
3.14.16.1 Ardour
3.14.16.2 Reaper
3.14.17 Virtualization
3.14.18 Gaming
3.14.19 Wacom
3.14.20 VNC & RDP
4 Upgrading the system
4.1 Fixing a faulty kernel upgrade.
5 Additional notes

Chapter 1

Inside the archiso

This chapter is aimed at assisting with the general setup of a customized Arch
Linux installation, using an official Arch Linux image (archiso).

NOTE

As Arch Linux is a rolling release GNU/Linux distribution, it is advised,
to have a working internet connection, in order to get the latest package
upgrades and to install additional software, as the archiso doesn’t
have all packages available from cache, especially the ones that need to
be installed from the AUR.

Furthermore, one should bear in mind that depending on the version,
or rather modification date, of this guide, the exact steps taken may
already be outdated. If you encounter any problems along the way,
you will either have to resolve the issue yourself, or utilize the great
ArchWikia, or the Arch Linux forumsb.

ahttps://wiki.archlinux.org/
bhttps://bbs.archlinux.org/

1.1 Syncing up pacman

First of all we need to sync up pacman’s package repository, in order to be
able to install the latest, as well as new packages to the archiso and our new
system.

root@archiso ~ # pacman -Sy

WARNING

Using $ pacman -Sy should be sufficient, in order to be able to search
for packages from within the archiso, without upgrading the system,
but might break your system, if you use this command on an existing
installation!

To be on the safe side, it is advised to always use $ pacman -Syu
instead!

pacstrap uses the latest packages anyways.

1.1.1 Official repositories
After doing that, we can now install any software from the official repositories
by issuing

root@archiso ~ # pacman -S <package_name>

where you would replace <package_name> with the actual package name.
If you want to remove an installed package, just use

root@archiso ~ # pacman -Rsu <package_name>

If you don’t know the exact package name, or if you just want to search
for a keyword, for example xfce, to list all packages having to do something
with xfce, use

root@archiso ~ # pacman -Ss <keyword>

CAUTION

If you really need to force remove a package, which you should use with
extreme caution, you could use

root@archiso ~ # pacman -Rdd <package_name>

1.1.2 AUR

If you want to install a package from the AUR1, I would advise proceeding in
the following manner

1. cd into the dedicated ~/AUR directory, if you’re using the dotfiles repo,
which provides you with an update bash script within that folder, to
check every subfolder for updates

dustvoice@archiso ~ $ cd AUR

2. Clone the package with git

dustvoice@archiso ~/AUR $ git clone
https://aur.archlinux.org/pacman-git.git↪→

3. Switch to the package directory

dustvoice@archiso ~/AUR $ cd pacman-git

4. Execute $ makepkg

dustvoice@archiso ~/AUR/pacman-git $ makepkg -si

5. Delete all files created by makepkg, in order to easily see, if a package
needs an update by using $ git fetch --all and $ git status

dustvoice@archiso ~/AUR/pacman-git $ git reset HEAD
--hard↪→

dustvoice@archiso ~/AUR/pacman-git $ git clean -fdx

NOTE

You might have to resolve some AUR dependencies manually, which
can’t be automatically resolved by makepkg’s -s option, whitch uses
pacman.

1https://aur.archlinux.org/

WARNING

In order to install the desired AUR package, you must switch to your
normal, non-root user, because makepkg doesn’t run as root.

NOTE

As mentioned before, there is an update bash script available within
the ~/AUR directory, when using the dotfiles repository, which enables
you to quickly check all cloned AUR repositories within said directory
for updates and even install them in the same step.

Issue $./update --help for command line options.

1.1.3 Software categories
In this guide, software is categorized in three different categories

• Console software is intended to be used with either the native linux
console, or with a terminal emulator

• GUI software is intended to be used within a graphical desktop environ-
ment

• Hybrid software can either be used within both a console and a graphical
desktop environment (e.g. networkmanager), or there are packages
available for both console and a graphical desktop environment (e.g.
pulseaudio with pulsemixer for Console and pavucontrol for GUI)

1.1.4 Software installation
In this guide, I’ll be explicitly listing the packages installed in a specific section
at the beginning of the individual sections.

This allows you to

• clearly see what packages get installed / need to be installed in a specific
section

• install packages before you start with the section in order to minimize
waiting time

• not having to accidentally reinstall already installed packages

NOTE

The packages are always the recommended packages.
For further clarification for specific packages (e.g. UEFI specific

packages), continue reading the section, as there is most certainly an
explanation there.

Of course, as always, you can and should adapt everything according
to your needs, as this guide is, again, no tutorial, but a guide.

1.1.4.1 Example section

core libutil-linux
extra git

community ardour cadence jsampler
linuxsampler qsampler
sample-package

AUR sbupdate

You have to configure sample-package, by editing /etc/sample.conf

Sample.text=useful

Code-Listing 1.1: /etc/sample.conf

1.2 Formatting the drive
First, you probably want to get a list of all available drives, together with
their corresponding device name, by issuing

root@archiso ~ # fdisk -l

NOTE

The output of $ fdisk -l is dependent on your system configuration
and many other factors, like BIOS initialization order, etc.

CAUTION

Don’t assume the same path of a device between reboots!
Always double check!
There is nothing worse than formatting a drive you didn’t

mean to format!

1.2.1 The standard way
In my case, the partition I want to install the root file system on is /dev/sdb2.
/dev/sdb3 will be my swap partition.

NOTE

A swap size twice the size of your RAM is recommended by a lot of
people.

To be exact, every distribution has different recommendations for
swap sizes. Also swap size heavily depends on whether you want to be
able to hibernate, etc.

In my opinion You should make the swap size at least your RAM
size and for RAM sizes over 4GB and the wish to hibernate, at least
one and a half your RAM size.

IMPORTANT

If you haven’t yet partitioned your disk, please refer to the general
partitioning tutoriala in the ArchWiki.

ahttps://wiki.archlinux.org/index.php/Partitioning

Now we need to format the partitions accordingly

root@archiso ~ # mkfs.ext4 /dev/sdb2
root@archiso ~ # mkswap /dev/sdb3

After doing that, we can turn on the swap and mount the root partition.

root@archiso ~ # swapon /dev/sdb3
root@archiso ~ # mount /dev/sdb2 /mnt

NOTE

If you have an additional EFI System partition, because of a UEFI -
GPT setup or an existing Windows installation, for example, which we
will assume to be located under /dev/sda2 (/dev/sda is the disk of
my Windows install), you’ll have to mount this partition to the new
system’s /boot folder

root@archiso ~ # mkdir /mnt/boot
root@archiso ~ # mount /dev/sda2 /mnt/boot

1.2.2 Full system encryption

NOTE

This is only one way to do it and it is the way I have done it. I’m using
a LVM on LUKS setup, with lvm2 and luks2. For more information look
into the ArchWikia.

ahttps://wiki.archlinux.org/

NOTE

This setup has different partitions, used for the EFI System partition,
the root partition, etc., compared to the ones used in the rest of the
guide. If you want to use grub in conjunction with some full system
encryption, you would have to adapt the disk and partition names
accordingly. The only part of the guide, which currently uses the drives
& partitions used in this section is The manual way.

To start things, we first have to decide, which disk, or partition, is going
to hold the luks2 encrypted lvm2 stuff.

In my case I’ll be using my NVMe SSD, with a GPT partition scheme, for
both the EFI System partition, in my case /dev/nvme0n1p1, defined as a EFI
System partition type in fdisk, as well as the main LUKS volume, in my case
/dev/nvme0n1p2, defined as a Linux filesystem partition type in fdisk.

After partitioning our disk, we now have to set everything up.

1.2.2.1 EFI System partition

core dosfstools

I won’t setup my EFI System partition with cryptsetup, as it makes no sense
in my case.

Every EFI binary (or STUB) will have to be signed with my custom Secure
Boot keys, as described in The manual way, so tempering with the EFI System
partition poses no risk to my system.

Instead I will simply format it with a FAT32 filesystem

root@archiso ~ # mkfs.fat -F 32 -L /efi /dev/nvme0n1p1

We will bother with mounting it later on.

NOTE

When you do want to encrypt your EFI System partition, in conjunction
with using grub, please either use LUKS 1, or make sure to have the
latest version of grub installed on your system, to make it work with
LUKS 2!

1.2.2.2 LUKS

core cryptsetup

First off we have to create the LUKS volume

root@archiso ~ # cryptsetup luksFormat --type luks2
/dev/nvme0n1p2↪→

After that we have to open the volume

root@archiso ~ # cryptsetup open /dev/nvme0n1p2 cryptroot

The volume is now accessible under /dev/mapper/cryptroot.

1.2.2.3 LVM

core lvm2

I’m going to create one PV (Physical Volume) using the just created and opened
cryptroot LUKS volume, one VG (Volume Group), named DustArch1, which
will contain two LVs (Logical Volumes) named root and swap containing the
root filesystem and the swap space respectively.

root@archiso ~ # pvcreate /dev/mapper/cryptroot
root@archiso ~ # vgcreate DustArch1 /dev/mapper/cryptroot
root@archiso ~ # lvcreate -L 100%FREE -n root DustArch1
root@archiso ~ # lvreduce -l -32G /dev/DustArch1/root
root@archiso ~ # lvcreate -L 100%FREE -n swap DustArch1

1.2.2.4 Format & mount

Now the only thing left to do is formatting our freshly created logical volumes
appropriately

root@archiso ~ # mkfs.ext4 -L / /dev/DustArch1/root
root@archiso ~ # mkswap /dev/DustArch1/swap

as well as mounting them and enabling the swap, in order to proceed with the
next steps.

root@archiso ~ # mount /dev/DustArch1/root /mnt
root@archiso ~ # mkdir /mnt/efi
root@archiso ~ # mount /dev/nvme0n1p1 /mnt/efi
root@archiso ~ # swapon /dev/DustArch1/swap

1.2.2.5 Unmount & Close

WARNING

Only do this, after you’re finished with your setup within the archiso
and are about to reboot into your new system, or else the next steps
won’t work for you.

To close everything back up again,

1. unmount the volumes

root@archiso ~ # umount /mnt/efi /mnt

2. deactivate the VG

root@archiso ~ # vgchange -a n DustArch1

3. close the LUKS volume

root@archiso ~ # cryptsetup close cryptroot

1.3 Preparing the chroot environment
First it might make sense to edit /etc/pacman.d/mirrorlist to move the
mirror(s) geographically closest to you to the top.

If you’re using an older version of the archiso, you might want to replace
the mirrorlist present on the archiso with the newest one from https://arch-
linux.org/mirrorlist2

root@archiso ~ # curl https://archlinux.org/mirrorlist/all >
/etc/pacman.d/mirrorlist↪→

NOTE

community reflector

The best way to do this, is using a package from the official reposito-
ries named reflector. It comes with all sorts of options, for example
sorting mirrors by speed, filtering by country, etc.

root@archiso ~ # reflector --verbose --latest 200
--sort rate --save /etc/pacman.d/mirrorlist↪→

After that you would need to reinstall the pacman-mirror package
and run

root@archiso ~ # pacman -Syyuu

for the best results.

After that we can pacstrap the minimum packages needed. We will install
all other packages later on.

core base linux linux-firmware

2https://archlinux.org/mirrorlist

NOTE

This is the actual command used in my case

root@archiso ~ # pacstrap /mnt base linux
linux-firmware↪→

After that generate an fstab using genfstab

root@archiso ~ # genfstab -U /mnt >> /mnt/etc/fstab

and you’re ready to enter the chroot environment.

Chapter 2

Entering the chroot

NOTE

As we want to set up our new system, we need to have access to the
different partitions, the internet, etc. which we wouldn’t get by solely
using chroot.

That’s why we are using arch-chroot, provided by the arch-
install-scripts package, which is shipped with the archiso. This
script takes care of all the afforementioned stuff, so we can set up our
system properly.

root@archiso ~ # arch-chroot /mnt

Et Voilà! You successfully chrooted inside your new system and you’ll
be greeted by a bash prompt, which is the default shell on fresh Arch Linux
installations.

2.1 Installing additional packages

core amd-ucode base-devel
diffutils dmraid dnsmasq
dosfstools efibootmgr
exfat-utils grub iputils lvm2
openssh sudo usbutils

extra efitools git intel-ucode
networkmanager
networkmanager-openconnect
networkmanager-openvpn parted
polkit rsync zsh

community neovim os-prober

NOTE

There are many command line text editors available, like nano, vi, vim,
emacs, etc.

I’ll be using neovim, though it shouldn’t matter what editor you
choose for the rest of the guide.

Make sure to enable the NetworkManager.service service, in order for
the Internet connection to work correctly, upon booting into the fresh system
later on.

[root@archiso /]# systemctl enable NetworkManager.service

With polkit installed, create a file to enable users of the network group
to add new networks without the need of sudo.

polkit.addRule(function(action, subject) {
if (action.id.indexOf("org.freedesktop.NetworkManager.")

== 0 && subject.isInGroup("network")) {↪→

return polkit.Result.YES;
}

});

Code-Listing 2.1: /etc/polkit-1/rules.d/50-org.fre c

edesktop.NetworkManager.rules

If you use UEFI, you’ll also need the efibootmgr, in order to modify the
UEFI entries.

2.2 Master of time
After that, you have to set your timezone and update the system clock.

Generally speaking, you can find all the different timezones under /usr/ c

share/zoneinfo.
In my case, my timezone file resides under /usr/share/zoneinfo/Euro c

pe/Berlin.
To achieve the desired result, I will want to symlink this to /etc/localtime

and set the hardware clock.

[root@archiso /]# ln -s /usr/share/zoneinfo/Europe/Berlin
/etc/localtime↪→

[root@archiso /]# hwclock --systohc --utc

Now you can also enable time synchronization over network

[root@archiso /]# timedatectl set-timezone Europe/Berlin
[root@archiso /]# timedatectl set-ntp true

and check that everything is alright

[root@archiso /]# timedatectl status

2.3 Master of locales
Now you have to generate your locale information.

For that you have to edit /etc/locale.gen and uncomment the locales
you want to enable.

NOTE

I recommend to always uncomment en_US.UTF-8 UTF8, even if you
want to use another language primarily.

In my case I only uncommented the en_US.UTF-8 UTF8 line

en_US.UTF-8 UTF8

Code-Listing 2.2: /etc/locale.gen

After that you still have to actually generate the locales by issuing

[root@archiso /]# locale-gen

and set the locale

[root@archiso /]# localectl set-locale LANG="en_US.UTF-8"

After that we’re done with this part.

2.4 Naming your machine
Now we can set the hostname for our new install and add hosts entries.

Apart from being mentioned in your command prompt, the hostname also
serves the purpose of identifying, or naming your machine locally, as well as
in a networked scenario. This will enable you to see your PC with the correct
name in your router, etc.

2.4.1 hostname

To change the hostname, simply edit /etc/hostname, enter the desired name,
then save and quit

DustArch

Code-Listing 2.3: /etc/hostname

2.4.2 hosts

Now we need to specify some hosts entries by editing /etc/hosts

Static table lookup for hostnames.
See hosts(5) for details.

127.0.0.1 localhost .
::1 localhost .
127.0.1.1 DustArch.localhost DustArch

Code-Listing 2.4: /etc/hosts

2.5 User setup
Now you should probably change the default root password and create a new
non-root user for yourself, as using your new system purely through the native
root user is not recommended from a security standpoint.

2.5.1 Give root a password
To change the password for the current user (the root user) issue

[root@archiso /]# passwd

and choose a new password.

2.5.2 Create a personal user

core sudo
extra zsh

We are going to create a new user and set the password, groups and shell for
this user

[root@archiso /]# useradd -m -p "" -G
"adm,audio,disk,floppy,kvm,log,lp,network,rfkill,scanner c

,storage,users,optical,power,wheel" -s /usr/bin/zsh
dustvoice

↪→

↪→

↪→

[root@archiso /]# passwd dustvoice

We now have to allow the wheel group sudo access.
For that we edit /etc/sudoers and uncomment the %wheel [...] line

%wheel ALL=(ALL) ALL

Code-Listing 2.5: /etc/sudoers

You could also add a new line below the root line

root ALL=(ALL) ALL

Code-Listing 2.6: /etc/sudoers

with your new username

dustvoice ALL=(ALL) ALL

Code-Listing 2.7: /etc/sudoers

to solely grant the new user sudo privileges.

2.6 Boot manager
In this section different boot managers / boot methods are explained.

2.6.1 EFISTUB

core efibootmgr

You can directly boot the system, by making use of the EFISTUB contained in
the kernel image. To utilize this, we can use efibootmgr to create an entry in
the UEFI

[root@archiso /]# efibootmgr --disk /dev/sda --part 2
--create --label "Arch Linux" --loader /vmlinuz-linux
--unicode 'root=6ff60fab-c046-47f2-848c-791fbc52df09 rw
initrd=\initramfs-linux.img
resume=UUID=097c6f11-f246-40eb-a702-ba83c92654f2'
--verbose

↪→

↪→

↪→

↪→

↪→

NOTE

This only makes sense of course, if you’re using UEFI instead of a
legacy BIOS. In this case it doesn’t matter of course, if your machine
theoretically supports UEFI, but rather if it is the enabled mode!

2.6.2 grub

core dosfstools efibootmgr grub
extra mtools

community os-prober

You can of course also use a boot manager, to boot the system, as the name
implies.

If I can’t use EFISTUB, either because the system hasn’t UEFI support,
or because I need another feature and/or convenience of a boot manager, I
normally use grub in this case.

NOTE

You’ll probably only need the efibootmgr package, if you plan to
utilize UEFI.

2.6.2.1 BIOS

If you chose the BIOS - MBR variation, you’ll have to do nothing special
If you chose the BIOS - GPT variation, you’ll have to have a +1M boot

partition created with the partition type set to BIOS boot.
In both cases you’ll have to run the following comman now

[root@archiso /]# grub-install --target=i386-pc /dev/sdb

NOTE

It should obvious that you would need to replace /dev/sdb with the
disk you actually want to use. Note however that you have to specify a
disk and not a partition, so no number.

2.6.2.2 UEFI

If you chose the UEFI - GPT variation, you’ll have to have the EFI System
partition mounted at /boot (where /dev/sda2 is the partition holding said
EFI System partition in my particular setup)

Now install grub to the EFI System partition

[root@archiso /]# grub-install --target=x86_64-efi
--efi-directory=/boot --bootloader-id=grub --recheck↪→

IMPORTANT

If you’ve planned on dual booting arch with Windows and therefore
reused the EFI System partition created by Windows, you might not
be able to boot to grub just yet.

In this case, boot into Windows, open a cmd window as Adminis-
trator and type in

bcdedit /set {bootmgr} path \EFI\grub\grubx64.efi

To make sure that the path is correct, you can use

[root@archiso /]# ls /boot/EFI/grub

under Linux to make sure, that the grubx64.efi file is really there.

2.6.2.3 grub config

In all cases, you now have to create the main grub.cfg configuration file.
But before we actually generate it, we’ll make some changes to the default

grub settings, which the grub.cfg will be generated from.

Adjust the timeout First of all, I want my grub menu to wait indefinitely
for my command to boot an OS.

GRUB_TIMEOUT=-1

Code-Listing 2.8: /boot/grub/grub.cfg

NOTE

I decided on this, because I’m dual booting with Windows and after
Windows updates itself, I don’t want to accidentally boot into my Arch
Linux, just because I wasn’t quick enough to select the Windows Boot
Loader from the grub menu.

Of course you can set this parameter to whatever you want.
Another way of achieving what I described, would be to make grub

remember the last selection.

GRUB_TIMEOUT=5
GRUB_DEFAULT=saved
GRUB_SAVEDEFAULT="true"

Code-Listing 2.9: /etc/default/grub

Enable the recovery After that I also want the recovery option showing up,
which means that besides the standard and fallback images, also the recovery
one would show up.

GRUB_DISABLE_RECOVERY=false

Code-Listing 2.10: /etc/default/grub

NVIDIA fix Now, as I’m using the binary NVIDIA driver for my graphics
card, I also want to make sure, to revert grub back to text mode, after I select

a boot entry, in order for the NVIDIA driver to work properly. You might not
need this

GRUB_GFXPAYLOAD_LINUX=text

Code-Listing 2.11: /etc/default/grub

Add power options I also want to add two new menu entries, to enable
me to shut down the PC, or reboot it, right from the grub menu.

menuentry '=> Shutdown' {
halt

}

menuentry '=> Reboot' {
reboot

}

Code-Listing 2.12: /etc/default/grub

Installing memtest As I want all possible options to possibly troubleshoot
my PC right there in my grub menu, without the need to boot into a live OS,
I also want to have a memory tester there.

extra memtest86+

BIOS For a BIOS setup, you’ll simply need to install the memtest86+
package, with no further configuration.

AUR memtest86-efi

UEFI For a UEFI setup, you’ll first need to install the package and then
tell memtest86-efiAUR how to install itself

[root@archiso /]# memtest86-efi -i

Now select option 3, to install it as a grub2 menu item.

Enabling hibernation We need to add the resume kernel parameter to
/etc/default/grub, containing my swap partition UUID, in my case

GRUB_CMDLINE_LINUX_DEFAULT="loglevel=3 quiet
resume=UUID=097c6f11-f246-40eb-a702-ba83c92654f2"↪→

Code-Listing 2.13: /etc/default/grub

NOTE

If you have to change anything, like the swap partition UUID, inside the
grub configuration files, you’ll always have to rerun $ grub-mkconfig
as explained in the paragraph Generating the grub config of the section
grub config.

Generating the grub config Now we can finally generate our grub.cfg

[root@archiso /]# grub-mkconfig -o /boot/grub/grub.cfg

Now you’re good to boot into your new system.

2.7 Switch to a systemd based ramdisk

NOTE

There is nothing particularily better about using a systemd based
ramdisk instead of a busybox one, it’s just that I prefer it.

Some advantages, at least in my opinion, that the systemd based
ramidsk has, are the included resume hook, as well as password caching,
when decrypting encrypted volumes, which means that because I use
the same LUKS password for both my data storage HDD, as well as my
cryptroot, I only have to input the password once for my cryptroot
and my data storage HDD will get decrypted too, without the need to
create /etc/crypttab entries, etc.

To switch to a systemd based ramdisk, you will normally need to substitute
the busybox specific hooks for systemd ones. You will also need to use systemd
hooks from now on, for example sd-encrypt instead of encrypt.

• base

In my case, I left the base hook untouched, to get a busybox recovery
shell, if something goes wrong, although you wouldn’t technically need
it, when using systemd.

WARNING

Don’t remove this, when using busybox, unless you’re absolutely
knowing what you’re doing.

• udev

Replace this with systemd to switch from busybox to systemd.

• keymap and/or consolefont

These two, or one, if you didn’t use one of them, need to be replaced
with sd-vconsole. Everything else stays the same with these.

• encrypt

Isn’t used in the default /etc/mkinitcpio.conf, but could be important
later on, for example when using Full system encryption. You need to
substitute this with sd-encrypt.

• lvm2

Same thing as with encrypt and needs to be substituted with sd-lvm2.

NOTE

You can find all purposes of the individual hooks, as well as the busybox
/ systemd equivalent of each one in the ArchWikia.

ahttps://wiki.archlinux.org/index.php/Mkinitcpio#Common_hooks

2.8 Hibernation
In order to use the hibernation feature, you should make sure that your swap
partition/file is at least the size of your RAM.

NOTE

If you use a busybox based ramdisk, you need to

1. add the resume hook to /etc/mkinitcpio.conf, before fsck
and definetely after block

HOOKS=(base udev autodetect modconf block filesystems
keyboard resume fsck)↪→

Code-Listing 2.14: /etc/mkinitcpio.conf

2. run

[root@archiso /]# mkinitcpio -p linux

NOTE

When using EFISTUB without sbupdate, your motherboard has to
support kernel parameters for boot entries. If your motherboard doesn’t
support this, you would need to use systemd-boota.

ahttps://wiki.archlinux.org/index.php/Systemd-boot

2.9 Secure Boot

2.9.1 shim

AUR shim-signed

WARNING

This is a way of handling secure boot that aims at just making every-
thing work!

It is not the way Secure Boot was intended to be used and you
might as well disable it.

If you need Secure Boot to be enabled, e.g. for Windows, but you
couldn’t care less for the security it could bring to your device, use this
method.

If you want to actually make use of the Secure Boot feature, read
The manual way.

I know I told you that you’re now good to boot into your new system.
That is only correct, if you’re not using Secure Boot.

You can either proceed by disabling Secure Boot in your firmware settings,
or by using shim as kind of a pre-bootloader, as well as signing your bootloader
(grub) and your kernel.

If you decided on using Secure Boot, you will first have to install the
package.

Now we just need to copy shimx64.efi, as well as mmx64.efi to our EFI
System partition

[root@archiso /]# cp /usr/share/shim-signed/shimx64.efi
/boot/EFI/grub/↪→

[root@archiso /]# cp /usr/share/shim-signed/mmx64.efi
/boot/EFI/grub/↪→

NOTE

If you have to use bcdedit from within Windows, as explained in
section UEFI, you need to adapt the command accordingly

bcdedit /set {bootmgr} path \EFI\grub\shimx64.efi

Now you will be greeted by MokManager everytime you update your boot-
loader or kernel.

Just choose ”Enroll hash from disk” and enroll your bootloader binary
(grubx64.efi) and kernel (vmlinuz-linux).

Reboot and your system should fire up just fine.

2.9.2 The manual way

WARNING

As this is a very tedious and time consuming process, it only makes
sense when also utilizing some sort of disk encryption, which is, why I
would advise you to read Full system encryption first.

2.9.2.1 File formats

In the following subsections, we will be dealing with some different file formats.

.key
PEM format private keys for EFI binary and EFI signature list signing.

.crt
PEM format certificates for sbsign.

.cer
DER format certigficates for firmware.

.esl
Certificates in EFI Signature List for KeyTool and/or firmware.

.auth
Certificates in EFI Signature List with authentication header (i.e. a
signed certificate update file) for KeyTool and/or firmware.

2.9.2.2 Create the keys

First off, we have to generate our Secure Boot keys.
These will be used to sign any binary which will be executed by the

firwmare.

GUID Let’s create a GUID first to use with the next commands.

[root@archiso ~/sb]# uuidgen --random > GUID.txt

PK We can now generate our PK (Platform Key)

[root@archiso ~/sb]# openssl req -newkey rsa:4096 -nodes
-keyout PK.key -new -x509 -sha256 -subj "/CN=Platform
Key for DustArch/" -out PK.crt

↪→

↪→

[root@archiso ~/sb]# openssl x509 -outform DER -in PK.crt
-out PK.cer↪→

[root@archiso ~/sb]# cert-to-efi-sig-list -g "$(< GUID.txt)"
PK.crt PK.esl↪→

[root@archiso ~/sb]# sign-efi-sig-list -g "$(< GUID.txt)" -k
PK.key -c PK.crt PK PK.esl PK.auth↪→

In order to allow deletion of the PK, for firmwares which do not provide
this functionality out of the box, we have to sign an empty file.

[root@archiso ~/sb]# sign-efi-sig-list -g "$(< GUID.txt)" -k
PK.key -c PK.crt PK /dev/null rm_PK.auth↪→

KEK We proced in a similar fashion with the KEK (Key Exchange Key)

[root@archiso ~/sb]# openssl req -newkey rsa:4096 -nodes
-keyout KEK.key -new -x509 -sha256 -subj "/CN=Key
Exchange Key for DustArch/" -out KEK.crt

↪→

↪→

[root@archiso ~/sb]# openssl x509 -outform DER -in KEK.crt
-out KEK.cer↪→

[root@archiso ~/sb]# cert-to-efi-sig-list -g "$(< GUID.txt)"
KEK.crt KEK.esl↪→

[root@archiso ~/sb]# sign-efi-sig-list -g "$(< GUID.txt)" -k
PK.key -c PK.crt KEK KEK.esl KEK.auth↪→

DB And finally the DB (Signature Database) key.

[root@archiso ~/sb]# openssl req -newkey rsa:4096 -nodes
-keyout db.key -new -x509 -sha256 -subj "/CN=Signature
Database key for DustArch" -out db.crt

↪→

↪→

[root@archiso ~/sb]# openssl x509 -outform DER -in db.crt
-out db.cer↪→

[root@archiso ~/sb]# cert-to-efi-sig-list -g "$(< GUID.txt)"
db.crt db.esl↪→

[root@archiso ~/sb]# sign-efi-sig-list -g "$(< GUID.txt)" -k
KEK.key -c KEK.crt db db.esl db.auth↪→

2.9.2.3 Windows stuff

As your plan is to be able to control, which things do boot on your system and
which don’t, you’re going through all this hassle to create and enroll custom
keys, so only EFI binaries signed with said keys can be executed.

But what if you have a Windows dual boot setup?
Well the procedure is actually pretty straight forward. You just grab

Microsoft’s certificates, convert them into a usable format, sign them and
enroll them. No need to sign the Windows boot loader.

[root@archiso ~/sb]# curl -fLo WinCert.crt https://www.micro c

soft.com/pkiops/certs/MicWinProPCA2011_2011-10-19.crt↪→

[root@archiso ~/sb]# openssl x509 -inform DER -outform PEM
-in MicWinCert.crt -out MicWinCert.pem↪→

[root@archiso ~/sb]# cert-to-efi-sig-list -g
77fa9abd-0359-4d32-bd60-28f4e78f784b MicWinCert.pem
MS_db.esl

↪→

↪→

[root@archiso ~/sb]# sign-efi-sig-list -a -g
77fa9abd-0359-4d32-bd60-28f4e78f784b -k KEK.key -c
KEK.crt db MS_db.esl add_MS_db.auth

↪→

↪→

2.9.2.4 Move the kernel & keys

In order to ensure a smooth operation, with actual security, we need to move
some stuff around.

Kernel, initramfs, microcode pacman will put its unsigned and unen-
crypted kernel, initramfs and microcode images into /boot, which is, why it
will be no longer a good idea, to leave your EFI System partition mounted
there. Instead we will create a new mountpoint under /efi and modify our
fstab accordingly.

Keys As you probably want to automate signing sooner or later and only
use the ultimately necessary keys for this process, as well as store the other
more important keys somewhere more safe and secure than your root home
directory, we will move the necessary keys.

I personally like to create a /etc/efi-keys directory, chmodded to 700
and place my db.crt and db.key there. All the keys will get packed into a
tar archive and encrypted with a strong symmetric pass phrase and stored
somewhere secure and safe.

2.9.2.5 Signing

Signing is the process of, well, signing your EFI binaries, in order for them
to be allowed to be executed, by the motherboard firmware. At the end of
the day, that’s why you’re doing all this, to prevent an attack by launching
unknown code.

Manual signing Of course, you can sign images yourself manually. In my
case, I used this, to sign the boot loader, kernel and initramfs of my USB
installation of Arch Linux.

NOTE

As always, manual signing also comes with its caveats!
If I update my kernel, boot loader, or create an updated initramfs

on my Arch Linux USB installation, I have to sign those files again, in
order to be able to boot it on my PC.

Of course you can always script and automate stuff, but if you want
something more easy for day to day use, I really recommend that you
try out sbupdate, which I will explain in the next paragraph sbupdate.

For example, if I want to sign the kernel image of my USB installation,
where I mounted the boot partition to /mnt/dustarchusb/boot, I would have
to do the following

[root@archiso ~/sb]# sbsign --key /etc/efi-keys/db.key
--cert /etc/efi-keys/db.crt --output /boot/vmlinuz-linux
/boot/vmlinuz-linux

↪→

↪→

AUR sbupdate-git

sbupdate Of course, if you’re using Secure Boot productively, you would
want something more practical than manual signing, especially since you need
to sign

• the boot loader

• the kernel image

• the initramfs

Fortunately there is an easy and uncomplicated tool out there, that does
all that for you, called sbupdate.

It not only signs everything and also foreign EFI binaries, if specified, but
also combines your kernel and initramfs into a single executable EFI binary,
so you don’t even need a boot loader, if your motherboard implementation
supports booting those.

After installing sbupdate, we can edit the /etc/sbupdate.conf file, to
set everything up.

Everything in this config should be self-explanatory.
You will probably need to

• set ESP_DIR to /efi

• add any other EFI binary you want to have signed to EXTRA_SIGN

• add your kernel parameters, for example

– rd.luks.name

– root

– rw

– resume

– etc.

to CMDLINE_DEFAULT

After you’ve successfully configured sbupdate, you can run it as root, to
create all the signed files.

NOTE

sbupdate will be executed upon kernel updates by pacman, but not if
you change your initramfs with something like mkinitcpio. In that
case you will have to run sbupdate manually.

2.9.2.6 Add EFI entries

core efibootmgr

Now the only thing left to do, if you want to stay boot loader free anyways, is
to add the signed images to the boot list of your NVRAM. You can do this with
efibootmgr.

[root@archiso ~/sb]# efibootmgr -c -d /dev/nvme0n1 -p 1 -L
"Arch Linux fallback" -l
"EFI\Arch\linux-fallback-signed.efi

↪→

↪→

[root@archiso ~/sb]# efibootmgr -c -d /dev/nvme0n1 -p 1 -L
"Arch Linux" -l "EFI\Arch\linux-signed.efi↪→

Of course you can extend this list, with whichever entries you need.

2.9.2.7 Enrolling everything

First off, copy all .cer, .esl and .auth files to a FAT formatted filesystem.
I’m using my EFI System partition for this.

After that reboot into the firmware setup of your motherboard, clear the
existing Platform Key, to set the firmware into ”Setup Mode” and enroll the
db, KEK and PK certificates in sequence.

NOTE

Enroll the Platform Key last, as it sets most firmware’s Secure Boot
sections back into ”User mode”, exiting ”Setup Mode”.

Chapter 3

Inside the DustArch

This section helps at setting up the customized system from within an installed
system.

This section mainly provides aid with the basic set up tasks, like networking,
dotfiles, etc.

NOTE

Not everything in this section is mandatory.
This section is rather a guideline, because it is easy to forget some

steps needed, for example jack for audio production, that only become
apparent, when they’re needed.

It is furthermore the responsibility of the reader to decide which
steps to skip and which need further research. As I mentioned, this is
only a guide and not the answer to everything.

3.1 Someone there?
First we have to check if the network interfaces are set up properly.

To view the network interfaces with all their properties, we can issue

DustArch% ip link

To make sure that you have a working Internet connection, issue

DustArch% ping archlinux.org

Everything should run smoothly if you have a wired connection.
If there is no connection and you’re indeed using a wired connection, try

restarting the NetworkManager service

DustArch% sudo systemctl restart NetworkManager.service

and then try $ pinging again.
If you’re trying to utilize a Wi-Fi connection, use nmcli, the Network-

Manager’s command line tool, or nmtui, the NetworkManager terminal user
interface, to connect to a Wi-Fi network.

NOTE

I never got nmtui to behave like I wanted it to, in my particular case
at least, which is the reason why I use nmcli or the GUI tools.

First make sure, the scanning of nearby Wi-Fi networks is enabled for your
Wi-Fi device

DustArch% nmcli radio

and if not, enable it

DustArch% nmcli radio wifi on

Now make sure your Wi-Fi interface appears under

DustArch% nmcli device

Rescan for available networks

DustArch% nmcli device wifi rescan

and list all found networks

DustArch% nmcli device wifi list

After that connect to the network

DustArch% nmcli device wifi connect --ask

Now try $ pinging again.

3.2 Update and upgrade
After making sure that you have a working Internet connection, you can then
proceed to update and upgrade all installed packages by issuing

DustArch% sudo pacman -Syu

3.3 Enabling the multilib repository
In order to make 32-bit packages available to pacman, we’ll need to enable the
multilib repository in /etc/pacman.conf first. Simply uncomment

[multilib]
Include = /etc/pacman.d/mirrorlist

Code-Listing 3.1: /etc/pacman.conf

and update pacman’s package repositories afterwards

DustArch% sudo pacman -Syu

3.4 zsh for president
Of course you can use any shell you want. In my case I’ll be using the zsh
shell.

NOTE

I am using zsh because of its auto completion functionality and ex-
tensibility, as well as a brilliant vim like navigation implementation
through a plugin, though that might not be what you’re looking for.

We already set the correct shell for the dustvoice user in the Create a
personal user step, but I want to use zsh for the root user too, so I’ll have to
change root’s default shell to it.

DustArch% sudo chsh -s /usr/bin/zsh root

Don’t worry about the looks by the way, we’re gonna change all that in
just a second.

3.5 git

extra git

Install the package and you’re good to go for now, as we’ll care about the
.gitconfig in just a second.

3.6 Security is important

core gnupg

If you’ve followed the tutorial using a recent version of the archiso, you’ll
probably already have the most recent version of gnupg installed by default.

3.6.1 Smartcard shenanigans

extra libusb-compat
community ccid opensc pcsclite

After that you’ll still have to setup gnupg correctly. In my case I have my
private keys stored on a smartcard.

To use it, I’ll have to install the listed packages and then enable and start
the pcscd.service service

DustArch% sudo systemctl enable pcscd.service
DustArch% sudo systemctl start pcscd.service

After that, you should be able to see your smartcard being detected

DustArch% gpg --card-status

NOTE

If your smartcard still isn’t detected, try logging off completely or even
restarting, as that sometimes is the solution to the problem.

3.7 Additional required tools

core make openssh
extra clang cmake jdk-openjdk

python
community pass python-pynvim

To minimize the effort required by the following steps, we’ll install most of the
required packages beforehand

This will ensure, we proceed through the following section without the
need for interruption, because a package needs to be installed, so the following
content can be condensed to the relevant informations.

3.8 Setting up a home environment
In this step we’re going to setup a home environment for both the root and
my personal dustvoice user.

NOTE

In my case these 2 home environments are mostly equivalent, which is
why I’ll execute the following commands as the dustvoice user first
and then switch to the root user and repeat the same commands.

I decided on this, as I want to edit files with elevated permissions
and still have the same editor style and functions/plugins.

Note that this comes with some drawbacks. For example, if I change
a configuration for my dustvoice user, I would have to regularly update
it for the root user too. This bears the problem, that I have to register
my smartcard for the root user. This in turn is problematic, cause
the gpg-agent used for ssh authentication, doesn’t behave well when
used within a $ su or $ sudo -i session. So in order to update root’s
config files I would either need to symlink everything, which I won’t
do, or I’ll need to login as the root user now and then, to update
everything.

NOTE

In my case, I want to access all my git repositories with my gpg key
on my smartcard. For that I have to configure the gpg-agent with
some configuration files that reside in a git repository. This means I
will have to reside to using the https URL of the repository first and
later changing the URL either in the corresponding .git/config file,
or by issuing the appropriate command.

3.8.1 Use dotfiles for a base config
To provide myself with a base configuration, which I can then extend, I have
created a dotfiles repository, which contains all kinds of configurations.

The special thing about this dotfiles repository is that it is my home
folder. By using a curated .gitignore file, I’m able to only include the
configuration files I want to keep between installs into the repository and
ignore everything else.

To achieve this very specific setup, I have to turn my home directory into
said dotfiles repository first

DustArch% git init
DustArch% git remote add origin

https://git.dustvoice.de/DustVoice/dotfiles.git↪→

DustArch% git fetch
DustArch% git reset origin/master --hard
DustArch% git branch --set-upstream-to=origin/master master

Now I can issue any git command in my ~ directory, because it now is a
git repository.

3.8.2 Set up gpg

As I wanted to keep my dotfiles repository as modular as possible, I utilize
git’s submodule feature. Furthermore I want to use my nvim repository,
which contains all my configurations and plugins for neovim, on Windows, but
without all the Linux specific configuration files. I am also using the Pass
repository on my Android phone and Windows PC, where I only need this
repository without the other Linux configuration files.

Before we’ll be able to update the submodules (nvim config files and
password-store) though, we will have to setup our gpg key as an ssh key, as I
use it to authenticate

dustvoice@DustArch ~
$ chmod 700 .gnupg
dustvoice@DustArch ~
$ gpg --card-status
dustvoice@DustArch ~
$ gpg --card-edit

(insert) gpg/card> fetch
(insert) gpg/card> q

dustvoice@DustArch ~
$ gpg-connect-agent updatestartuptty /bye

NOTE

You would have to adapt the keygrip present in the ~/.gnupg/ c

sshcontrol file to your specific keygrip, retrieved with $ gpg -K
--with-keygrip.

Now, as mentioned before, I’ll switch to using ssh for authentication, rather
than https

dustvoice@DustArch ~
$ git remote set-url origin

git@git.dustvoice.de:DustVoice/dotfiles.git↪→

As the best method to both make zsh recognize all the configuration
changes, as well as the gpg-agent behave properly, is to re-login, we’ll do just
that

dustvoice@DustArch ~
$ exit

WARNING

It is very important to note, that I mean a real re-login.
That means that if you’ve used ssh to log into your machine, it

probably won’t be sufficient to login into a new ssh session. You’ll
probably need to restart the machine completely.

3.8.3 Finalize the dotfiles

Now log back in and continue

dustvoice@DustArch ~
$ git submodule update --recursive --init
dustvoice@DustArch ~
$ source .zshrc
dustvoice@DustArch ~
$ cd .config/nvim
dustvoice@DustArch ~/.config/nvim
$ echo 'let g:platform = "linux"' >> platform.vim
dustvoice@DustArch ~/.config/nvim
$ echo 'let g:use_autocomplete = 3' >> custom.vim
dustvoice@DustArch ~/.config/nvim
$ echo 'let g:use_clang_format = 1' >> custom.vim
dustvoice@DustArch ~/.config/nvim
$ echo 'let g:use_font = 0' >> custom.vim
dustvoice@DustArch ~/.config/nvim
$ nvim --headless +PlugInstall +qa
dustvoice@DustArch ~/.config/nvim
$ cd plugged/YouCompleteMe
dustvoice@DustArch ~/.config/nvim/plugged/YouCompleteMe
$ python3 install.py --clang-completer --java-completer
dustvoice@DustArch ~/.config/nvim/plugged/YouCompleteMe
$ cd ~

3.8.4 gpg-agent forwarding
Now there is only one thing left to do, in order to make the gpg setup complete:
gpg-agent forwarding over ssh. This is very important for me, as I want
to use my smartcard on my development server too, which requires me, to
forward/tunnel my gpg-agent to my remote machine.

First of all, I want to setup a config file for ssh, as I don’t want to pass all
parameters manually to ssh every time.

Host <connection name>
HostName <remote address>
ForwardAgent yes
ForwardX11 yes
RemoteForward <remote agent-socket> <local

agent-extra-socket>↪→

RemoteForward <remote agent-ssh-socket> <local
agent-ssh-socket>↪→

Code-Listing 3.2: ~/.ssh/config

NOTE

You would of course, need to adapt the content in between the < and >
brackets.

To get the paths needed as parameters for RemoteForward, issue

dustvoice@DustArch ~
$ gpgconf --list-dirs

Example 1. An example for a valid ~/.ssh/config would be

Host archserver
HostName pc.dustvoice.de
ForwardAgent yes
ForwardX11 yes
RemoteForward /run/user/1000/gnupg/S.gpg-agent

/run/user/1000/gnupg/S.gpg-agent.extra↪→

RemoteForward /run/user/1000/gnupg/S.gpg-agent.ssh
/run/user/1000/gnupg/S.gpg-agent.ssh↪→

Code-Listing 3.3: ~/.ssh/config

Now you’ll still need to enable some settings on the remote machine(s).

StreamLocalBindUnlink yes
AllowAgentForwarding yes
X11Forwarding yes

Code-Listing 3.4: /etc/ssh/sshd_config

Now just restart your remote machine(s) and you’re ready to go.

NOTE

If you use alacritty, to connect to your remote machine over ssh,
you will need to install the alacritty on the remote machine too, as
alacritty uses its own $TERM.

Another option would be changing that variable for the ssh com-
mand

dustvoice@DustArch ~
$ TERM=xterm-256colors ssh remote-machine

3.8.5 Back to your roots
As mentioned before, you would now switch to the root user, either by logging
in as root, or by using

dustvoice@DustArch ~
$ sudo -iu root

Now go back to Setting up a home environment to repeat all commands
for the root user.

WARNING

A native login would be better compared to $ sudo -iu root, as there
could be some complications, like already running gpg-agent instances,
etc., which you would need to manually resolve, when using $ sudo
-iu root.

3.9 Audio
Well, why wouldn’t you want audio...

3.9.1 alsa

extra alsa-utils

NOTE

You’re probably better off using pulseaudio and/or jack.

Now choose the sound card you want to use

dustvoice@DustArch ~
$ cat /proc/asound/cards

and then create /etc/asound.conf

defaults.pcm.card 2
defaults.ctl.card 2

Code-Listing 3.5: /etc/asound.conf

NOTE

It should be apparent, that you would have to switch out 2 with the
number corresponding to the sound card you want to use.

3.9.2 pulseaudio

extra pavucontrol pulseaudio
community pulsemixer

Some applications require pulseaudio, or work better with it, for example
discord, so it might make sense to use pulseaudio

For enabling real-time priority for pulseaudio on Arch Linux, please make
sure your user is part of the audio group and edit the file /etc/pulse/daem c

on.conf, so that you uncomment the lines

high-priority = yes
nice-level = -11

realtime-scheduling = yes
realtime-priority = 5

Code-Listing 3.6: /etc/pulse/daemon.conf

If your system can handle the load, you can also increase the remixing
quality, by changing the resample-method

resample-method = speex-float-10

Code-Listing 3.7: /etc/pulse/daemon.conf

Of course a restart of the pulseaudio daemon is necessary to reflect the
changes you just made

dustvoice@DustArch ~
$ pulseaudio --kill
dustvoice@DustArch ~
$ pulseaudio --start

3.9.3 jack

extra pulseaudio-jack
community cadence jack2

If you either want to manually control audio routing, or if you use some kind of
audio application like ardour, you’ll probably want to use jack and cadence
as a GUI to control it, as it has native support for bridging pulseaudio to
jack.

3.9.4 Audio handling

extra libao libid3tag libmad
libpulse opus wavpack

community sox twolame

To also play audio, we need to install the mentioned packages and then simply
do

dustvoice@DustArch ~
$ play audio.wav
dustvoice@DustArch ~
$ play audio.mp3

to play audio.

3.10 Bluetooth

extra bluez bluez-util
pulseaudio-bluetooth

community blueman

To set up Bluetooth, we need to install the bluez and bluez-utils packages
in order to have at least a command line utility bluetoothctl to configure
connections

Now we need to check if the btusb kernel module was already loaded

dustvoice@DustArch ~
$ sudo lsmod | grep btusb

After that we can enable and start the bluetooth.service service

dustvoice@DustArch ~
$ sudo systemctl enable bluetooth.service
dustvoice@DustArch ~
$ sudo systemctl start bluetooth.service

NOTE

To use bluetoothctl and get access to the Bluetooth device of your
PC, your user needs to be a member of the lp group.

Now simply enter bluetoothctl

dustvoice@DustArch ~
$ bluetoothctl

In most cases your Bluetooth interface will be preselected and defaulted,
but in some cases, you might need to first select the Bluetooth controller

(insert) [DustVoice]# list
(insert) [DustVoice]# select <MAC_address>

After that, power on the controller

(insert) [DustVoice]# power on

Now enter device discovery mode

(insert) [DustVoice]# scan on

and list found devices

(insert) [DustVoice]# devices

NOTE

You can turn device discovery mode off again, after your desired device
has been found

(insert) [DustVoice]# scan off

Now turn on the agent

(insert) [DustVoice]# agent on

and pair with your device

(insert) [DustVoice]# pair <MAC_address>

NOTE

If your device doesn’t support PIN verification you might need to
manually trust the device

(insert) [DustVoice]# trust <MAC_address>

Finally connect to your device

(insert) [DustVoice]# connect <MAC_address>

NOTE

If your device is an audio device, of some kind you might have to install
pulseaudio-bluetooth.

You will then also need to append 2 lines to /etc/pulse/system.pa

load-module module-bluetooth-policy
load-module module-bluetooth-discover

Code-Listing 3.8: /etc/pulse/system.pa

and restart pulseaudio

dustvoice@DustArch ~
$ pulseaudo --kill
dustvoice@DustArch ~
$ pulseaudo --start

If you want a GUI to do all of this, just install blueman and launch
blueman-manager

3.11 Graphical desktop environment

extra ttf-hack xclip xorg
xorg-drivers xorg-xinit

community arandr alacritty bspwm dmenu
sxhkd

AUR polybar

If you decide, that you want to use a graphical desktop environment, you have
to install additional packages in order for that to work.

NOTE

xclip is useful, when you want to send something to the X clipboard.
It is also required, in order for neovim’s clipboard to work correctly. It
is not required though.

3.11.1 NVIDIA

extra nvidia nvidia-utils
nvidia-settings opencl-nvidia

If you also want to utilize special NVIDIA functionality, for example for
davinci-resolve, you’ll most likely need to install their proprietary driver.

To configure the X server correctly, one can use nvidia-xconfig

dustvoice@DustArch ~
$ sudo nvidia-xconfig

If you want to further tweak all settings available, you can use nvidia-
settings.

dustvoice@DustArch ~
$ sudo nvidia-settings

will enable you to ”Save to X Configuration File”, witch merges your changes
with /etc/X11/xorg.conf.

With

dustvoice@DustArch ~
$ nvidia-settings

you’ll only be able to save the current configuration to ~/.nvidia-setting c

s-rc, witch you have to source after X startup with

dustvoice@DustArch ~
$ nvidia-settings --load-config-only

NOTE

You will have to reboot sooner or later after installing the NVIDIA
drivers, so you might as well do it now, before any complications come
up.

3.11.2 Launching the graphical environment
After that you can now do startx in order to launch the graphical environment.

If anything goes wrong in the process, remember that you can press Ctrl c

+Alt+<Number> to switch ttys.

3.11.2.1 The NVIDIA way

community bbswitch
AUR nvidia-xrun

If you’re using an NVIDIA graphics card, you might want to use nvidia-
xrunAUR instead of startx. This has the advantage, of the nvidia kernel
modules, as well as the nouveau ones not loaded at boot time, thus saving
power. nvidia-xrunAUR will then load the correct kernel modules and run the
.nvidia-xinitrc script in your home directory (for more file locations look
into the documentation for nvidia-xrunAUR).

IMPORTANT

At the time of writing, nvidia-xrunAUR needs sudo permissions before
executing its task.

NOTE

AUR nvidia-xrun-pm

If your hardware doesn’t support bbswitch, you would need to use
nvidia-xrun-pmAUR instead.

Now we need to blacklist both nouveau and nvidia kernel modules.
To do that, we first have to find out, where our active modprobe.d directory

is located. There are 2 possible locations, generally speaking: /etc/modprob c

e.d and /usr/lib/modprobe.d. In my case it was the latter, which I could
tell, because this directory already had files in it.

Now I’ll create a new file named nvidia-xrun.conf and write the following
into it

blacklist nvidia
blacklist nvidia-drm
blacklist nvidia-modeset
blacklist nvidia-uvm
blacklist nouveau

Code-Listing 3.9:
/usr/lib/modprobe.d/nvidia-xrun.conf

With this config in place,

dustvoice@DustArch ~
$ lsmod | grep nvidia

and

dustvoice@DustArch ~
$ lsmod | grep nouveau

should return no output. Else you might have to place some additional entries
into the file.

NOTE

Of course, you’ll need to reboot, after blacklisting the modules and
before issuing the 2 commands mentioned.

NOTE

If you installed nvidia-xrun-pm instead of nvidia-xrun and bbswitch,
you might want to also enable the nvidia-xrun-pm service

dustvoice@dustArch ~
$ sudo systemctl enable nvidia-xrun-pm.service

NOTE

The required .nvidia-xinitrc file, mentioned previously, should al-
ready be provided in the dotfiles repository.

Now instead of startx, just run nvidia-xrun, enter your sudo password
and you’re good to go.

3.12 Additional console software
Software that is useful in combination with a console.

3.12.1 tmux

community tmux

I would reccommend to install tmux which enables you to have multiple
terminal instances (called windows in tmux) open at the same time. This
makes working with the linux terminal much easier.

NOTE

To view a list of keybinds, you just need to press Ctrl+b followed by ?.

3.12.2 Communication
Life is all about communicating. Here are some pieces of software to do exactly
that.

3.12.2.1 weechat

community weechat

weechat is an IRC client for the terminal, with the best features and even a
vim mode, by using a plugin

To configure everything, open weechat

dustvoice@DustArch ~
$ weechat

and install vimode, as well as configure it

/script install vimode.py
/vimode bind_keys
/set

plugins.var.python.vimode.mode_indicator_normal_color_bg
"blue"

↪→

↪→

Now add mode_indicator+ in front of and ,[vi_buffer] to the end of
weechat.bar.input.items, in my case

/set weechat.bar.input.items
"mode_indicator+[input_prompt]+(away),[input_search],[in c

put_paste],input_text,[vi_buffer]"
↪→

↪→

Now add ,cmd_completion to the end of weechat.bar.status.items, in
my case

/set weechat.bar.status.items "[time],[buffer_last_number],[c

buffer_plugin],buffer_number+:+buffer_name+(buffer_modes c

)+{buffer_nicklist_count}+buffer_zoom+buffer_filter,scro c

ll,[lag],[hotlist],completion,cmd_completion"

↪→

↪→

↪→

Now enable vimode searching

/set plugins.var.python.vimode.search_vim on

Now you just need to add a new connection, for example irc.freenode. c

net

/server add freenode irc.freenode.net

and connect to it

/connect freenode

NOTE

You might need to authenticate with NickServ, before being able to
write in a channel

/msg NickServ identify <password>

NOTE

Instead of directly /setting the values specified above, you can also do

/fset weechat.var.name

after that, using the cursor, select the entry you want to modify (for
example plugins.var.python.vimode) and then press s (make sure
you’re in insert mode) and Return, in order to modify the existing
value.

3.12.3 PDF viewer

extra ghostscript
community fbida

To use asciidoctor-pdf, you might be wondering how you are supposed to
open the generated PDFs from the native linux console.

This fbida package provides the fbgs software, which renders a PDF
document using the native framebuffer.

To view this PDF document (Documentation.pdf) for example, you would
run

dustvoice@DustArch ~
$ fbgs Documentation.pdf

NOTE

You can view all the controls by pressing h.

3.13 Additional hybrid software
Some additional software providing some kind of GUI to work with, but that
can be useful in a console only environment nevertheless.

3.13.1 Password management
I’m using pass as my password manager. As we already installed it in the
Additional required tools step and updated the submodule that holds our
.password-store, there is nothing left to do in this step

3.13.2 python

extra python

Python has become really important for a magnitude of use cases.

3.13.3 ruby & asciidoctor

extra ruby rubygems

In order to use asciidoctor, we have to install ruby and rubygems. After
that we can install asciidoctor and all its required gems.

NOTE

If you want to have pretty and highlighted source code, you’ll need to
install a code formatter too.

For me there are mainly two options

• pygments.rb, which requires python to be installed

dustvoice@DustArch ~
$ gem install pygments.rb

• rouge which is a native ruby gem

dustvoice@DustArch ~
$ gem install rouge

Now the only thing left, in my case at least, is adding ~/.gem/ruby/2.7 c

.0/bin to your path.

NOTE

Please note that if you run a ruby version different from 2.7.0, or if
you upgrade your ruby version, you have to use the bin path for that
version.

For zsh you’ll want to add a new entry inside the .zshpath file

path+=("$HOME/.gem/ruby/2.7.0/bin")

Code-Listing 3.10: ~/.zshpath

which then gets sourced by the provided .zshenv file. An example is provided
with the .zshpath.example file

NOTE

You might have to re-$ source the .zshenv file to make the changes
take effect immediately

dustvoice@DustArch ~
$ source .zshenv

NOTE

If you want to add a new entry to the path variable, you have to
append it to the array

path+=("pass:[$HOME/.gem/ruby/2.7.0/bin"
"$]HOME/.gem/ruby/2.6.0/bin")↪→

NOTE

If you use another shell than zsh, you might have to do something
different, to add a directory to your PATH.

3.13.4 JUCE and FRUT

JUCE is a library for C++ that enables you to develop cross-platform applications
with a single codebase.

FRUT makes it possible to manage JUCE projects purely from cmake.

NOTE

Note that apparently in the new JUCE version, cmake support is inte-
grated. It remains to be seen how well this will work and if FRUT will
become obsolete.

The information in this guide should be updated ASAP, if it is
apparent that FRUT has now become obsolete.

dustvoice@DustArch ~
$ git clone https://github.com/WeAreROLI/JUCE.git
dustvoice@DustArch ~
$ cd JUCE
dustvoice@DustArch ~/JUCE
$ git checkout develop
dustvoice@DustArch ~/JUCE
$ cd ..
dustvoice@DustArch ~
$ git clone https://github.com/McMartin/FRUT.git

3.13.4.1 Using JUCE

core gcc gnutls
extra alsa-lib clang freeglut

freetype2 ladspa libx11
libxcomposite libxinerama
libxrandr mesa webkit2gtk

community jack2 libcurl-gnutls
multilib lib32-freeglut

In order to use JUCE, you’ll need to have some dependency packages installed,
where ladspa and lib32-freeglut are not neccessarily needed.

3.13.5 Additional development tools
Here are just some examples of development tools one could install in addition
to what we already have.

3.13.5.1 Code formatting

community astyle

We already have clang-format as a code formatter, but this only works for
C-family languages. For java stuff, we can use astyle

3.13.5.2 Documentation

extra doxygen

To generate a documentation from source code, I mostly use doxygen

3.13.5.3 Build tools

community ninja

In addition to make, I’ll often times use ninja for my builds

3.13.6 Android file transfer

extra gvfs-mtp libmtp

Now you should be able to see your phone inside either your preferred fileman-
ager, in my case thunar, or gigoloAUR.

If you want to access the android’s file system from the command line, you
will need to either install and use simple-mtpfsAUR, or adb

3.13.6.1 simple-mtpfsAUR

AUR simple-mtpfs

Edit /etc/fuse.conf to uncomment

user_allow_other

Code-Listing 3.11: /etc/fuse.conf

and mount the android device

dustvoice@DustArch ~
$ simple-mtpfs -l
dustvoice@DustArch ~
$ mkdir ~/mnt
dustvoice@DustArch ~
$ simple-mtpfs --device <number> ~/mnt -allow_other

and respectively unmount it

dustvoice@DustArch ~
$ fusermount -u mnt
dustvoice@DustArch ~
$ rmdir mnt

3.13.6.2 adb

community android-tools

Kill the adb server, if it is running

dustvoice@DustArch ~
$ adb kill-server

NOTE

If the server is currently not running, $ adb [...] will output an error
with a Connection refused message.

Now connect your phone, unlock it and start the adb server

dustvoice@DustArch ~
$ adb start-server

If the PC is unknown to the android device, it will display a confirmation
dialog. Accept it and ensure that the device was recognized

dustvoice@DustArch ~
$ adb devices

Now you can push/pull files.

dustvoice@DustArch ~
$ adb pull /storage/emulated/0/DCIM/Camera/IMG.jpg .
dustvoice@DustArch ~
$ adb push IMG.jpg /storage/emulated/0/DCIM/Camera/IMG2.jpg
dustvoice@DustArch ~
$ adb kill-server

NOTE

Of course you would need to have the developer options unlocked, as
well as the USB debugging option enabled within them, for adb to even
work.

3.13.7 Partition management

extra gparted parted

You may also choose to use a graphical partitioning software instead of fdisk
or cfdisk. For that you can use gparted. Of course there is also the console
equivalent parted.

3.13.8 PDF viewer

extra evince
community zathura zathura-pdf-mupdf

To use asciidoctor-pdf, you might be wondering how you are supposed to
open the generated PDFs using the GUI.

zathura has a minimalistic design and UI with a focus on vim keybinding,
whereas evince is a more desktop like experience, with things like a print
dialogue, etc.

3.13.9 Process management

extra htop xfce4-taskmanager

The native tool is top.
The next evolutionary step would be htop, which is an improved version

of top (like vi and vim for example)
If you prefer a GUI for that kind of task, use xfce4-taskmanager.

3.13.10 Video software
Just some additional software related to videos.

3.13.10.1 Live streaming a terminal session

community tmate

For this task, you’ll need a program called tmate.

3.14 Additional GUI software
As you now have a working graphical desktop environment, you might want
to install some software to utilize your newly gained power.

3.14.1 Session Lock

community xsecurelock xss-lock

Probably the first thing you’ll want to set up is a session locker, which locks
your X-session after resuming from sleep, hibernation, etc. It then requires
you to input your password again, so no unauthorized user can access you
machine.

I’ll use xss-lock to hook into the necessary systemd events and then use
xsecurelock as my locker.

IMPORTANT

You need to make sure this command gets executed upon start of the
X-session, so hook it into your window manager startup script, or in a
file called by your desktop environment

dustvoice@DustArch ~
$ xss-lock -l -- xsecurelock &

3.14.2 xfce-polkitAUR

AUR xfce-polkit

In order for GUI applications to acquire sudo permissions, we need to install
a PolicyKit authentication agent.

We could use gnome-polkit for that purpose, which resides inside the
official repositories, but I decided on using xfce-polkitAUR.

Now you just need to startup xfce-polkitAUR before trying to execute
something like gparted and you’ll be prompted for your password.

As I already launch it as a part of my bspwm configuration, I won’t have
to worry about that.

3.14.3 Desktop background

extra nitrogen

You might want to consider installing nitrogen, in order to be able to set a
background image

3.14.4 Compositing software

community picom

To get buttery smooth animation as well as e.g. smooth video playback in
brave without screen tearing, you might want to consider using a compositor,
in my case one named picom

WARNING

In order for obs’ screen capture to work correctly, you need to kill
picom completely before using obs.

dustvoice@DustArch ~
$ killall picom

or

dustvoice@DustArch ~
$ ps aux | grep picom
dustvoice@DustArch ~
$ kill -9 <pid>

3.14.5 networkmanager applet

extra network-manager-applet

To install the NetworkManager applet, which lives in your tray and provides
you with a quick method to connect to different networks, you have to install
the network-manager-applet package

Now you can start the applet with

dustvoice@DustArch ~
$ nm-applet &

If you want to edit the network connections with a more full screen approach,
you can also launch $ nm-connection-editor.

NOTE

The nm-connection-editor doesn’t search for available Wi-Fis. You
would have to set up a Wi-Fi connection completely by hand, which
could be desirable depending on how difficult it is to set up your Wi-Fi.

3.14.6 Show keyboard layout

AUR xkblayout-state

To show, which keyboard layout and variant is currently in use, you can use
xkblayout-stateAUR

Now simply issue the layout alias, provided by my custom zsh configura-
tion.

3.14.7 X clipboard

extra xclip

To copy something from the terminal to the xorg clipboard, use xclip

3.14.8 Taking screen shots

community scrot

For this functionality, especially in combination with rofi, use scrot. $
scrot ~/Pictures/filename.png then saves the screen shot under ~/Pict c

ures/filename.png.

3.14.9 Image viewer

extra ristretto

Now that we can create screen shots, we might also want to view those

dustvoice@DustArch ~
$ ristretto filename.png

3.14.10 File manager

extra gvfs thunar
AUR gigolo

You probably also want to use a file manager. In my case, thunar, the xfce
file manager, worked best.

To also be able to mount removable drives, without being root or using
sudo, and in order to have a GUI for mounting stuff, you would need to use
gigoloAUR and gvfs.

3.14.11 Archive manager

extra cpio unrar unzip zip
community xarchiver

As we now have a file manager, it might be annoying, to open up a terminal
every time you simply want to extract an archive of some sort. That’s why
we’ll use xarchiver.

3.14.12 Web browser

extra firefox firefox-i18n-en-us
community browserpass

As you’re already using a GUI, you also might be interested in a web browser.
In my case, I’m using firefox, as well as browserpass from the official
repositories, together with the uBlock Origin1, Dark Reader2, DuckDuckGo
Pricacy Essentials3, Vimium4 and finally Browserpass5 add-ons, in order to
use my passwords in firefox and have best protection in regard to privacy,
while browsing the web.

We still have to setup browserpass, after installing all of this

dustvoice@DustArch ~
$ cd /usr/lib/browserpass
dustvoice@DustArch /usr/lib/browserpass
$ make hosts-firefox-user
dustvoice@DustArch /usr/lib/browserpass
$ cd ~

1https://addons.mozilla.org/en-US/firefox/addon/ublock-origin/
2https://addons.mozilla.org/en-US/firefox/addon/darkreader/
3https://addons.mozilla.org/en-US/firefox/addon/duckduckgo-for-firefox/
4https://addons.mozilla.org/en-US/firefox/addon/vimium-ff/
5https://addons.mozilla.org/en-US/firefox/addon/browserpass-ce/

3.14.12.1 Entering the dark side

AUR tor-browser

You might want to be completely anonymous whilst browsing the web at some
point. Although this shouldn’t be your only precaution, using tor-browserAUR

would be the first thing to do

NOTE

You might have to check out how to import the gpg keys on the AUR
page of tor-browser.

3.14.13 Office utilities

extra libreoffice-fresh

I’ll use libreoffice-fresh for anything that I’m not able to do with neovim.

3.14.13.1 Printing

extra avahi cups cups-pdf nss-mdns
print-manager
system-config-printer

In order to be able to print from the gtk print dialog, we’ll also need system-
config-printer and print-manager.

dustvoice@DustArch ~
$ sudo systemctl enable avahi-daemon.service
dustvoice@DustArch ~
$ sudo systemctl start avahi-daemon.service

Now you have to edit /etc/nsswitch.conf and add
mdns4_minimal [NOTFOUND=return]

hosts: files mymachines myhostname mdns4_minimal
[NOTFOUND=return] resolve [!UNAVAIL=return] dns↪→

Code-Listing 3.12: /etc/nsswitch.conf

Now continue with this

dustvoice@DustArch ~
$ avahi-browse --all --ignore-local --resolve --terminate
dustvoice@DustArch ~
$ sudo systemctl enable org.cups.cupsd.service
dustvoice@DustArch ~
$ sudo systemctl start org.cups.cupsd.service

Just open up system-config-printer now and configure your printer.
To test if everything is working, you could open up brave, then go to Print

and then try printing.

3.14.14 Communication
Life is all about communicating. Here are some pieces of software to do exactly
that.

3.14.14.1 Email

extra thunderbird

There is nothing better than some classical email.

3.14.14.2 Telegram

community telegram-desktop

You want to have your telegram messages on your desktop PC?

3.14.14.3 TeamSpeak 3

community teamspeak3

Wanna chat with your gaming friends and they have a teamspeak3 server?

3.14.14.4 Discord

community discord

You’d rather use discord?

3.14.15 Video software
Just some additional software related to videos.

3.14.15.1 Viewing video

extra vlc

You might consider using vlc

3.14.15.2 Creating video

AUR obs-linuxbrowser-bin
obs-glcapture-git
obs-studio-git

obs-studio-gitAUR should be the right choice.
You can also make use of the plugins provided in the package list above.

AUR screenkey

Showing keystrokes In order to show the viewers what keystrokes you’re
pressing, you can use something like screenkeyAUR

NOTE

For ideal use with obs, my dotfiles repository already provides you
with the $ screenkey-obs alias for you to run with zsh.

3.14.15.3 Editing video

AUR davinci-resolve

In my case, I’m using davinci-resolveAUR.

3.14.15.4 Utilizing video

AUR teamviewer

Wanna remote control your own or another PC? teamviewerAUR might just be
the right choice for you

3.14.16 Audio Production
You might have to edit /etc/security/limits.conf, to increase the allowed
locked memory amount.

In my case I have 32GB of RAM and I want the audio group to be able to
allocate most of the RAM, which is why I added the following line to the file

@audio - memlock 29360128

Code-Listing 3.13: /etc/security/limits.conf

3.14.16.1 Ardour

community ardour

To e.g. edit and produce audio, you could use ardour, because it’s easy to
use, stable and cross platform.

NOTE

extra ffmpeg

Ardour won’t natively save in the mp3 format, due to licensing stuff.
In order to create mp3 files, for sharing with other devices, because they
have problems with wav files, for example, you can just use ffmpeg.

and after that we’re going to convert in.wav to out.mp3

dustvoice@DustArch ~
$ ffmpeg -i in.wav -acodec mp3 out.mp3

3.14.16.2 Reaper

AUR reaper-bin

Instead of ardour, I’m using reaper, which is available for linux as a beta
version, in my case more stable than ardour and more easy to use for me.

3.14.17 Virtualization

community virtualbox
virtualbox-host-modules-arch

You might need to run another OS, for example Mac OS, from within Linux,
e.g. for development/testing purposes. For that you can use virtualbox.

Now when you want to use virtualbox just load the kernel module

dustvoice@DustArch ~
$ sudo modprobe vboxdrv

and add the user which is supposed to run $ virtualbox to the vboxusers
group

dustvoice@DustArch ~
pass:[$ sudo usermod -a G vboxusers $]USER

and if you want to use rawdisk functionality, also to the disk group

dustvoice@DustArch ~
pass:[$ sudo usermod -a G disk $]USER

Now just re-login and you’re good to go.

3.14.18 Gaming

extra pulseaudio pulseaudio-alsa
community lutris
multilib lib32-libpulse

lib32-nvidia-utils steam

The first option for native/emulated gaming on Linux is obviously steam.
The second option would be lutris, a program, that configures a wine

instance correctly, etc.

3.14.19 Wacom

extra libwacom xf86-input-wacom

In order to use a Wacom graphics tablet, you’ll have to install some packages
You can now configure your tablet using the xsetwacom command.

3.14.20 VNC & RDP

extra libvncserver
community remmina

AUR freerdp

In order to connect to a machine over VNC or to connect to a machine using the
Remote Desktop Protocol, for example to connect to a Windows machine,
I’ll need to install freerdpAUR, as well as libvncserver, for RDP and VNC
functionality respectively, as well as remmina, to have a GUI client for those
two protocols.

Now you can set up all your connections inside remmina.

Chapter 4

Upgrading the system

You’re probably wondering why this gets a dedicated section.
You’ll probably think that it would be just a matter of issuing

dustvoice@DustArch ~
$ sudo pacman -Syu

That’s both true and false.
You have to make sure, that your boot partition is mounted at /boot in

order for everything to upgrade correctly. That’s because the moment you
upgrade the linux package without having the correct partition mounted at
/boot, your system won’t boot. You also might have to do $ grub-mkconfig
-o /boot/grub/grub.cfg after you install a different kernel image.

If your system indeed doesn’t boot and boots to a recovery console, then
double check that the issue really is the not perfectly executed kernel update
by issuing

root@DustArch ~
$ uname -a

and

root@DustArch ~
$ pacman -Q linux

The version of these two packages should be exactly the same!
If it isn’t there is an easy fix for it.

4.1 Fixing a faulty kernel upgrade
First off we need to restore the old linux package.

For that note the version number of

root@DustArch ~
$ uname -a

Now we’ll make sure first that nothing is mounted at /boot, because the
process will likely create some unwanted files. The process will also create a
new /boot folder, which we’re going to delete afterwards.

root@DustArch ~
$ umount /boot

Now cd into pacman’s package cache

root@DustArch ~
$ cd /var/cache/pacman/pkg

There should be a file located named something like linux-<version>.p c

kg.tar.xz, where <version> would be somewhat equivalent to the previously
noted version number

Now downgrade the linux package

root@DustArch ~
$ pacman -U linux-<version>.pkg.tar.xz

After that remove the possibly created /boot directory

root@DustArch ~
$ rm -rf /boot
root@DustArch ~
$ mkdir /boot

Now reboot and mount the boot partition, in my case an EFI System
partition.

Now simply rerun

dustvoice@DustArch ~
$ sudo pacman -Syu

and you should be fine now.

Chapter 5

Additional notes

If you’ve printed this guide, you might want to add some additional blank
pages for notes.

