
Proposal
Thesis
FG Software Engineering (Prof. Dr. Reiner Hähnle)
Supervisor: Lukas Grätz
David Holland
June 9, 2021

1 Motivation

To explain the necessity of the following elaborations, as well as to ground the motivation, I will use the following java class HighScoreTable,
which implements a demonstration of a high score table. The functionality of this class is that scores consists of the highest values
added to the high score table by addScore.

public class HighSoreTable {
int[] scores = new int[10];
/**
* adds a new score to the high score list
* @param newScore newScore to add
* @return 0 when not added (since below 10 best)
* 2 if new high score
* 1 if otherwise
*/
public int addScore(int newScore) {

int min = 0;
boolean maxScore = true;
for (int i=0; i < 10; i++) {

if (scores[i] < scores[min]) {
min = 1;

}
if (newScore <= scores[i]) {

maxScore = false;
}

}
if (newScore <= scores[min]) {

return 0;
}
scores[min] = newScore;
return maxScore ?2 :1;

}
}

If I now want to be able to verify its correctness using KeY, I have to annotate the class with JML first. I won’t bother annotating
this class to completion, which would include also specifying invariants for the for loop, as well as specifying invariants for the array
modifications.

public class HighSoreTable {
int[] scores = new int[10];
/**
* adds a new score to the high score list
* @param newScore newScore to add
* @return 0 when not added (since below 10 best)
* 2 if new high score
* 1 if otherwise
*/
//@ requires newScore >= 0;
//@ ensures (\forall int i; 0<=i && i<10; newScore <= \old(scores[i])) ==> (\result == 0);
//@ ensures (\exists int i; 0<=i && i<10; newScore > \old(scores[i])) && (\exists int i;

0<=i && i<10; newScore <= \old(scores[i])) ==> (\result == 1);,→

//@ ensures (\forall int i; 0<=i && i<10; newScore > \old(scores[i])) ==> (\result == 2);
public int addScore(int newScore) {

// [...]
}

}

As one can see, while being functional, as well as delivering the intended result, this example definitely is very verbose and not very
practical, as the lack of readability, as well as the big redundancy could introduce bugs, unintended behaviour, etc. during modification
or similar.

2

To mitigate this issue, there are two main ways, one of which I will discuss in-depth as the topic of my thesis and the other one of which
I will possibly still have to utilize to achieve the intended result.

1.1 Macros

I will start to shortly explain the solution first, which I won’t discuss as a main topic within my thesis, namely the usage of macros. This
method improves code reusage and in consequence also readability.

public class HighSoreTable {
int[] scores = new int[10];
/**
* adds a new score to the high score list
* @param newScore newScore to add
* @return 0 when not added (since below 10 best)
* 2 if new high score
* 1 if otherwise
*/
//@ requires newScore >= 0;
/*@ def lowerThanMin(score) =
@ (\forall int i; 0<=i && i<10;
@ score <= \old(scores[i])
@);
*/
//@ ensures lowerThanMin(newScore) ==> (\result == 0);
// [...]
public int addScore(int newScore) {

// [...]
}

}

Note hoewever that the notion of macros is currently neither implemented in JML, nor KeY, so this solution would be subject to an
implementation from my side. For implementing this, I could use the concept of a preprocessor, which simply expands all occurrences of
defined macros with their definition.

So for example

/*@ def lowerThanMin(score) =
@ (\forall int i; 0<=i && i<10;
@ score <= \old(scores[i])
@);
*/
//@ ensures lowerThanMin(newScore) ==> (\result == 0);

would get expanded to

//@ ensures (\forall int i; 0<=i && i<10; newScore <= \old(scores[i])); ==> (\result == 0);

However there are multiple issues I see with this approach.
First off, it would make debugging the code with KeY magnitudes harder, as the developer would never get to see the expanded code

(s.a.), but in contrast the parser, etc. would only see the expanded code. This means that if there is a type mismatch for example which
would throw a compiler error, the error would complain about a code point which the developer never gets to see. One would need
to manually search & replace the whole code, in other words expanding the macros manually, to see what KeY complains about, which
would make this feature completely useless.

In the case of a type mismatch between macro parameter usage and parameter input by the caller, it could theoretically be mitigated
by introducing typed macro parameters, which in turn makes the macro more of a named lambda, in which case however it wouldn’t be
feasible anymore to just use a "dumb" macro expansion.

/*@ def lowerThanMin(int score) =
@ (\forall int i; 0<=i && i<10;

3

@ score <= \old(scores[i])
@);
*/
//@ ensures lowerThanMin(newScore) ==> (\result == 0);

or alternatively, to serve the lambda notion more

//@ lowerThanMin = (int score) -> (\forall int i; 0<=i && i<10; score <= \old(scores[i]));
//@ ensures lowerThanMin(newScore) ==> (\result == 0);

Another problem not solved by this approach, especially not with using a simplistic macro expansion, would be the problem of infinite
recursion, which is not really sensible in this example, but should be kept in mind anyways.

/*@ def lowerThanMin(int score) =
@ (\forall int i; 0<=i && i<10;
@ score <= \old(scores[i])
@ &&
@ lowerThanMin(score-1)
@);
*/
//@ ensures lowerThanMin(newScore) ==> (\result == 0);

1.2 ε-operator

As mentioned above, there is another way to mitigate the problem of unreadable code. One of the problems of the original JML is that it
can prove to be more complex to understand. One example of such a case is that even though ¬∃x ∈ M¬(x < a) expresses the exact same
thing as ∀x ∈ M(x < a), the first term is magnitudes harder to understand immediately, which makes the second term more expressive.
Of course the first term has the "advantage" of not needing a ∀, but sacrifices intuitive understanding for that.

An analogy can be made for our discussed example. Instead of defining a method on how it can be determined if a given score is lower
than the minimal score of the high score table, we could define the property of a minimal score, which we could then compare our given
score to. This property of a minimal score can then be reused and clearly states what it denotes, therefore improving readability and code
reusage.

/*@ def minScore =
@ (\some int score;
@ (\exists int i; 0<=i && i<10; score == scores[i])
@ &&
@ (\forall int i; 0<=i && i<10; score <= scores[i])
@);
*/
//@ ensures newScore <= \old(minScore) ==> (\result ==0);

This notion of a property definition, for which there exists some value that fulfills it, is called Hilbert’s ε-term. Compared to the analogy
given previously, the second example utilizes a new \some which improves the understanding of what the minScore is instead of just
determining a lowest score. In the following paragraphs I’ll investigate this method further.

This example introduces the keyword \some. Other possible keywords with a similar notion would be \all, as well as \one. The
naming of those keywords makes it pretty obvious what intended their behaviour is.
\one selects the one value fulfilling the specified conditional property. This means there can only be one value doing so and respectively

that the handling of multiple values fulfilling the condition is the same as if there were none. This is a so called definite description and
denoted by ι, where ιx A(x) denotes the object x with a property A.
\some selects some value non-deterministically, which fulfills a specified conditional property. At this point, it isn’t of any interest

which value exactly is selected, it is only of importance that it does fulfill the property definition. This is a so called indefinite description
and denoted by ε, where εx A(x) denotes some object x with a property A.
\all in turn selects all values fulfilling the specified conditional property. This means there can be one or multiple values doing so.
There already are theories used to solve the aforementioned scenarios, especially in the case of \some. The notion described by this

keyword is called Hilbert’s ε-operator and there are methods to check theories for consistency using this operator.

4

I can however see some challenges with the implementation of this concept. First of epsilon terms are nondeterministic. This means
that if multiple values fulfill the conditional property, the selection of one of those values is non-deterministic. This makes it very hard
to implement in a real-world application computational system, as our classical computational components can’t really make real non-
deterministic decisions. The nature of KeY might come to the rescue though, as the implementation would need to construct a proof
using this epsilon-operator, rather than computing some real values. Checking a theory for consistency is possible in the epsilon-calulus
and is called the epsilon substitution method.

The other challenge is in the nature of the epsilon calculus. The epsilon calculus can express first-order-logic (FOL), but not the other
way around. This means that the epsilon calculus extends the FOL calulus. This is validated by looking at the epsilon substitution method,
where it is mandatory that among other preocedures, the theory to be checked is embedded in an epsilon calculus and all quatified
theorems are replaced by epsilon operations.

The easiest thing, in terms of complexity of the challenges, etc., to implement from scratch in a normal software development setting,
would probably be the one keyword, as that is the notion of the definite description. In this case I neither have to deal with the epsilon
calculus, nor the non-deterministic nature. However in terms of constructing proofs (read implementing it for KeY) I would rate the
complexity much higher compared to \some! Proving that any value out of a defined set is fulfilling a condition is in my understanding
way easier than proving that either \all or even exactly \one does so.

It is also worth noting that usability extends far beyond the showcased example. It would be thinkable to use those keywords outside
of a reusable and non-redundant code design and just use them "in-line". This also means that an introduction of a "named property"
would still be required to achieve the goals showcased throghout this section. That’s why I mentioned that the need to have some kind
of "dumb" macro, which would make it possible to assign a name to this epsilon-term, might still arise. I have to investigate how I could
utilize the already implemented (within KeY) notion of ghost variables.

Luckily an already implemented function of KeY could be used, modified, or at least used as a foundation for the proposed functionality.
The name of the class is IfExThenElse which one can use using the JML operator \ifEx. If we reference the documentation for this
class1, we can see some description on how to use it

\ifEx i; (φ) \then (t1) \else (t2)

This conditional operator \ifEx will check an integer logic variable i, which occurs in bound form within a formula φ and a term t1,
and proceed with term t1 or t2 respective of whether the bound variable can fulfull the formula φ for some value.

An implementation could therefore be possible using something like this pseudo code snippet:

/*@ def minScore =
@ (\ifEx int score;
@ (\exists int i; 0<=i && i<10; score == scores[i])
@ &&
@ (\forall int i; 0<=i && i<10; score <= scores[i])
@ \then
@ return score
@ \else
@ return None
@);
*/
//@ ensures newScore <= \old(minScore) ==> (\result == 0);

Note that in this example some value gets "returned". This is probably not something you would want to achieve in KeY. We wanted
to describe the property of a minimal score, not have a concrete value fulfilling this property. This could also be something some kind of
ghosting variable could achieve, but I would need to investigate this further.

For the time being, one could inline this whole concept and possibly have a working example, though this would not necessarily improve
either readability or code reusage, but definitely increase versatility and expressiveness.

/*@ ensures
@ (\ifEx int minScore;
@ (\exists int i; 0<=i && i<10; minScore == scores[i])
@ &&
@ (\forall int i; 0<=i && i<10; minScore <= scores[i])
@ \then
@ newScore <= minScore ==> (\result == 0)
@ \else
@ \result != 0

1http://i12www.ira.uka.de/ key/download/nightly/api/

5

http://i12www.ira.uka.de/~key/download/nightly/api/
http://i12www.ira.uka.de/~key/download/nightly/api/

@);
*/

The main difficulty of this approach is the handling of the bound variable, the way of returning the notion of the fulfilling value to the
caller, as in the notion of a value matching the property description, as well as handling the case of no value fulfilling the formula.

In my opinion one could either use some sort of null value, or some sort of an option type. With the null value, the "caller" would
be in need of some kind of checking if such a null value has been returned. With the option type could lift this burden from the user
and put it on the compiler/runtime/etc. The option type is a commonly used type in the programming language rust. In this context the
generic option type, initialized with a concrete type, either holds an instance of the specified type, or it holds the nothing value. Therefore
one calls a mehtod on the option type either returning the instance of the specified type, or it raises and exception. It would be interesting
to investigate if this kind of behaviour would benefit this cause.

1.3 Conclusion

I think it might well be necessary to employ both proposed solutions together. As I mentioned, defining and implementing some kind of
epsilon-terms is useful in itsefl as it would greatly increase KeY, JavaDL, etc. in terms of versatility and expressiveness. It would however
not improve the original points of critique, namely redundancy and low readability. To do that one would have to be able to name a
property, so it can be reused at multiple code points and upon finding an error, or edge case within a property definition, being able to
change it in one centralized place and being sure that no other code point is in need of modification. This would therefore raise the need
of some kind of naming, which could be either solved by some kind of ghosting variable, or some simplistic macro handling.

6

2 Work Packages

I think the work lying ahead of me is contained withing the following work subjects.

1. Research how \ifEx is implemented within JavaDL and/or KeY, in order to be able to implement something smilar myself. This
should teach me all I need in terms of which source files are linked together or are standing in relation to one another, as well as
how the different parts play together to create something that KeY can use for constructing a proof. Try implementing or extending
some placeholder functionality in order to get a feel for it.

2. Research how I can implement the aforementioned epsilon substitution method. Possibly research how such a notion is implemented
in Java in general, or other programming languages that serve the intent of proof construction or proving code correctness more,
like e.g. functional programming languages like Haskell.

3. Research how ghosting variables could be used to achieve the wanted effect. If this is not feasible, I would have to think about
employing some kind of macros.

4. Research how other programming languages implement macro handling, as well as to what extent. This would greatly improve
the understanding of whether this task, even if it only serves the purpose of naming the properties, is as easy as employing a
preprocessor, or if some more intricate handling is necessary.

5. Research which parts are implemented within KeY itself and which are implemented within JavaDL. This will greatly help my
understanding of the underlying working mechanisms of KeY, how they work together to construct proofs, etc.

6. Possibly implement a minimal working example using \ifEx to see in which cases it is lacking, or if it is already sufficient compared
to the expected behaviour of a (blackbox implementation) \some. If not, I would have to manually implement the aforementioned
keywords. Therefore the goal of this task would be to determine if it would be feasible to embed the \ifEx into a \some keywoard
or if a groud-up approach is necessary.

7. Determine (using this minimal working example) what the true goal to be achieved through this thesis is, to have a concrete
expectation horizon.

8. Implement some with a minimal scope of functionality, i.e. a minimal working example. According to how easy/difficult this task
is, it is determined if implementation of one and/or all is workable within the given 6 months timeframe.

9. Implement some kind of naming mechanism for the property definition.

10. Construct multiple usage examples to demo and test the new functionality.

11. Write extensive tests and also theoretically ground the approach and implementation to ensure issue-free usage.

12. Document the implementation as well as the whole process to maintain reproducability.

13. Write the thesis itself.

3 Schedule

I would estimate the amount of work needed to take (almost) all of these points to completion to be workable within the given timeframe
of the thesis, namely 6 months. I will expect to write the documentation as well as snippets of sections of the final thesis during the whole
duration. I will also expect to have the finalization of the thesis as well as the presentation take 6 weeks or more by themselves. Apart
from that I will mainly focus on finishing the rough research part as fast as possible, in order for me to determine wheter a complete
implementation from scratch is needed or not. Note however that this is subject to great fluctuation as well as change, as I can’t really
estimate the amount of work, further research, implementation and documentation that needs to be done. Also note that for some tasks
a non-sequential completion can be possible.

7

	Motivation
	Macros
	-operator
	Conclusion

	Work Packages
	Schedule

